Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans

Gernot Arp; Andreas Reimer; Joachim Reitner

Stable URL:
http://links.jstor.org/sici?sici=0036-8075%2820010601%293%3A292%3A5522%3C1701%3APBCACC%3E2.0.CO%3B2-B

Science is currently published by American Association for the Advancement of Science.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aaas.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans

Gernot Arp,* Andreas Reimer, Joachim Reitner

Photosynthetic carbon assimilation is commonly invoked as the cause of calcium carbonate precipitation in cyanobacterial biofilms that results in the formation of calcareous stromatolites. However, biofilm calcification patterns in recent lakes and simulation of photosynthetically induced rise in calcium carbonate supersaturation demonstrate that this mechanism applies only in settings low in dissolved inorganic carbon and high in calcium. Taking into account paleo–partial pressure curves for carbon dioxide, we show that Phanerozoic oceans sustaining calcified cyanobacteria must have had considerably higher calcium concentrations than oceans of today. In turn, the enigmatic lack of calcified cyanobacteria in stromatolite-bearing Precambrian sequences can now be explained as a result of high dissolved inorganic carbon concentrations.

There is increasing evidence that the ocean’s chemical composition fluctuated considerably during the Precambrian as well as during the Phanerozoic (1–3). Conditions favoring carbonate precipitation can be inferred from cyanobacteria, because their calcification is dependent on the supersaturation of the ambient water with respect to CaCO₃ minerals (4, 5). Recurrent calcification of microbial mats and biofilms, commonly dominated by cyanobacteria and/or nonphototrophic bacteria, leads to the formation of stromatolites, laminated reeflike structures that once were common in the marine realm. Starting with a limited number of Archean occurrences, stromatolites were most widespread and abundant in the Proterozoic, followed by a severe decline in the latest Proterozoic (6, 7). Subsequently, clotted microbial deposits, so-called thrombolites, were common since the beginning of the Cambrian, but finally vanished almost completely from normal-marine environments during the Late Cretaceous, together with the remaining stromatolites (8).

Carbonate stromatolites of the Precambrian almost never exhibit tubular or vesicular carbonate microfossils of cyanobacteria, which should have been the dominant group of microorganisms in most of the shallow-marine stromatolite occurrences (8, 9). This appears enigmatic (9) because cyanobacterial filament and cell remains have been preserved when early silification occurred (10). On the other hand, such calcified cyanobacteria occur nearly continuously in fluctuating abundances from the Cambrian to the Cretaceous, either forming skeletal stromatolites, oncoids, or distinct microfossils such as *Girvanella* (10).

Three crucial steps in cyanobacterial biofilm calcification can be distinguished: (i) the initial supersaturation of the macroenvironment with regard to CaCO₃ minerals, (ii) the shift of the carbonate equilibrium to surpass the critical supersaturation for CaCO₃ mineral formation, and (iii) the process of seed crystal formation. In the following, saturation is given by the saturation index

\[\text{SI}_{\text{CaCO}_3} = \log(IAP/K_{\text{so}}) \]

where IAP denotes the ion activity product and \(K_{\text{so}} \) is the solubility product of the corresponding mineral (solid phase) (11). Case studies of nonmarine settings exhibiting present-day calcifying cyanobacterial biofilms indicate a 9.5- to 15-fold supersaturation of the ambient water with respect to calcite (12–14). Therefore, an ~10-fold supersaturation (SI_{CaCO₃} = 1.0) is here taken as a prerequisite for cyanobacterial calcification.

CaCO₃ mineral nucleation in microbial biofilms always starts from the common gel-like exopolymer matrix. Apart from their biological functions (15), extracellular polymeric substances (EPS), arranged in a highly hydrated network, affect mineralization in two ways. (i) They permit the establishment of physicochemical and chemical microgradients by reducing diffusion rates, and (ii) they bind divalent cations such as Ca²⁺ and Mg²⁺ from the liquid phase. The latter reflects the abundance of acidic groups within the EPS, which is not merely a sticky mass trapping and binding particles, but is composed largely of highly reactive, carboxylated polysaccharides (15, 16). In accordance with the concept of organic matrix-mediated biomineralization (17, 18), the stereochemical arrangement of these acidic groups is of crucial importance in mineral nucleation. Highly ordered acidic groups at defined distances that correspond to the crystal lattice promote nucleation, whereas irregularly arranged groups inhibit precipitation. Because EPS are, in contrast to organic matrices in biomineralization, highly diverse and disordered, this latter effect prevails in biofilms. Nucleation of CaCO₃ only occurs at acidic groups, which are suitably arranged mainly by accident, after a sufficient diffusive Ca²⁺ supply surpasses the complexation capacity of the EPS. As a result, if no effective physicochemical microgradients are established by the microorganisms, randomly distributed crystals form in the EPS (19).

Stimulated by the hypothesis (20) that ocean chemistry before 1000 Ma (million years ago) might have been highly alkaline, with pH values up to 10, and that soda lake microbialites may have Proterozoic counterparts, we investigated biofilm mineralization in soda lakes. Typically, physicochemically driven CaCO₃ precipitation of randomly distributed crystals occurs in the biofilm EPS at the contact to the supersaturated liquid phase so that no defined sheath impregnation results (12–14, 19).

By contrast, for the formation of calcified cyanobacteria, it is critical that photosynthetic carbon withdrawal creates a pH-microgradient within the trichome-surrounding sheath to induce a spatially defined CaCO₃ impregnation (19). A causal relation of photosynthetic carbon assimilation and carbonate precipitation in cyanobacteria has been shown convincingly for freshwater settings, both by isotopic and experimental studies (21, 22). So, how strong is the relative effect of photosynthesis in shifting carbonate equilibrium in the different hydrochemical settings?

The basic concept is expressed by the solubility product

\[K_{\text{so}} = (\text{Ca}^{2+}) \times (\text{CO}_3^{2-}) \]

A rise in the concentration of CO₂⁻ ([CO₂⁻]⁻) will cause the ion activity product to exceed the solubility product, resulting in higher supersaturation the lower the initial concentration in dissolved inorganic carbon (DIC) is. In the case of photosynthesis, the rise in [CO₂⁻]⁻ results from the disproportionation of bicarbonate to carbonate and CO₂, which is fixed by the organisms (23):

\[2\text{HCO}_3^- \rightleftharpoons \text{CO}_3^{2-} + \text{CO}_2 + \text{H}_2\text{O} \]

To simulate the susceptibility of calcite supersaturation of high-Ca²⁺/low-DIC and low-Ca²⁺/high-DIC waters against a given photosynthetic carbon removal, we calculated model curves (24). The same procedure was applied to water-chemistry data of 29...
settings sustaining calcifying biofilms (24). The resulting difference between the calcite supersaturation index before and after carbon subtraction, termed ΔS_{LC}, is plotted against DIC at equilibrium conditions in Fig. 1.

As a result, high-DIC waters—i.e., soda lakes and adjacent mixing zones at freshwater inputs—show a negligible to minor rise in calcite supersaturation upon carbon removal (Fig. 1). This is because of the large carbon pool and the strong pH buffering of soda lake waters. All of these high-DIC settings lack CaCO$_3$ precipitates spatially linked to cyanobacterial sheaths (25). Low-DIC marine settings and Na-Cl–dominated lakes show minor to moderately high ΔS_{LC} values. Lake Tanganyika (Tanzania), Lake Satonda (Indonesia), Lake Thetis, and Shark Bay (Western Australia) cluster between 0.1 and 0.2 ΔS_{LC}. These settings, which presently sustain microbial reef growth, show clotted, microcrystalline precipitates within the cyanobacterial biofilm EPS (25). Nonetheless, precipitates immediately linked to cyanobacteria occur regularly in Lake Clifton (Western Australia) at a ΔS_{LC} of 0.20, although a clotted fabric still dominates in these thrombolites (25). Thus, a ΔS_{LC} of at least 0.20 is here considered necessary for the formation of calcified cyanobacteria as defined by CaCO$_3$–impregnated cyanobacterial sheaths. Saline pools of the Aldabra atoll (Seychelles) ($\Delta S_{\text{LC}} = 0.18 - 0.30$) exhibit stromatolites that locally contain cyanobacterial filament moulds encased in microcrystalline carbonate (25).

Riding (26) described calcareous sheath impregnation in Plectonema from another pool on Aldabra high in Ca$^{2+}$ as a possible analog of the calcified cyanobacterium *Girvanella*.

Low-DIC nonmarine settings—i.e., hardwater lakes and creeks—show a relatively strong rise in calcite supersaturation upon DIC removal ($\Delta S_{\text{LC}} = 0.3 - 0.5$). The ΔS_{LC} is generally higher compared with marine water of the same initial DIC (Fig. 1) where Mg$^{2+}$ and SO$_4^{2-}$ tend to lower free Ca$^{2+}$ and CO$_3^{2-}$ concentrations as a result of ion pairing and complexation. Commonly, physicochemical CO$_2$ degassing dominates in hardwater creeks, and cyanobacterial filaments mineralize externally (4, 6). Only when in equilibrium with atmospheric pCO$_2$ does sheath impregnation by microcrystalline carbonate occur. Notably, the few known case studies of proven photosynthesis-induced CaCO$_3$ precipitation show the most substantial calculated rise in supersaturation upon DIC removal (Fig. 1): Fayetteville Green Lake (21) and a pond from the Everglades (22).

Figure 2 demonstrates the photosynthetic effect on supersaturation at pCO$_2$ levels expected for certain periods in Earth’s history. Whereas high ΔS_{LC} values (>0.20) can be achieved for a pCO$_2$ between 10^{-3} and $10^{-2.5}$ atm, if sufficient Ca$^{2+}$ is added, at higher pCO$_2$ (10^{-2}, 10^{-1} atm) ΔS_{LC} generally remains below this threshold, and calcified cyanobacteria are unlikely to occur. The dotted line in Fig. 2 illustrates the susceptibility of standard seawater to carbon removal by rising pCO$_2$ at a constantly held 10-fold initial supersaturation. After reaching a maximum ΔS_{LC} at pCO$_2 = 10^{-3}$ atm, standard marine waters show an increasingly low reaction to carbon removal at higher pCO$_2$ conditions. In any case, only an additional Ca$^{2+}$ input can cause the ΔS_{LC} of seawater to exceed the threshold for cyanobacterial sheath calcification of 0.20.

As a result of this effect, a lower threshold of Ca$^{2+}$ concentrations can be calculated for Phanerozoic oceans that sustained calcified cyanobacteria (Fig. 3). Accepting palaeo-pCO$_2$ curves of Berner (27) and Ekart et al. (28) and a ΔS_{LC} of 0.20 to enable CaCO$_3$ impregnation of cyanobacterial sheaths by photosynthesis, at least 13 mmol liter$^{-1}$ Ca$^{2+}$ were necessary to sustain calcified cyanobacteria in Carboniferous to recent oceans. Earlier in the Paleozoic, Ca$^{2+}$ concentrations up to at least 23 mmol liter$^{-1}$ must be assumed.

The resulting Ca$^{2+}$ minimum concentrations are compared with the Ca$^{2+}$ concentrations derived from model calculations by Stanley and Hardie (2) (Fig. 3A), which are based on steady-state mixing of river water and mid-ocean ridge hydrothermal brines coupled with precipitation of solid CaCO$_3$ and SiO$_2$ phases. The more the absolute Ca$^{2+}$ concentrations exceed these Ca$^{2+}$ minimum estimates, the higher the likelihood that calcified cyanobacteria formed in the corresponding ocean (Fig. 3, B and C). The fossil record of calcified cyanobacteria from open-marine settings should reflect this relation (29) (Fig. 3D). Although the predicted and observed abundances of occurrences do not exactly coincide at the 10-Ma intervals, their rough tendencies do (Fig. 3E). Above all, the predicted gaps in the Lower Permian, Lower Triassic, and Lower Jurassic apparently correspond to the Asselian, Sceythian, and Toarcian, which lack marine calcified cyanobacteria, although stromatolites occur.

The most notable discrepancy exists with regard to the Cretaceous and Paleogene. Very high Ca$^{2+}$ concentrations are suggested by the Ca$^{2+}$ model curve of Stanley and Hardie (2), but fewer and fewer occurrences of calcified cyanobacteria are known from the Berriasian to Santonian (Fig. 3). However, biogenic Ca$^{2+}$ removal is not included in the Hardie-model calculation, and the successive vanishing of calcified cyanobacteria may point to a substantial drawdown of Ca$^{2+}$ by the calcareous nanoplankton and planktonic
foraminifera since the Late Jurassic (30). This is consistent with the volume of Upper Cretaceous—Early Paleocene chalk deposits of coccolithophorids. In the first instance, these sediments reflect high Ca$^{2+}$ flux rates rather than high absolute Ca$^{2+}$ concentrations.

Precambrian marine carbonate stromatolites almost completely lack calcified cyanobacteria (8, 9), although cyanobacterial remains comparable to those of recent taxa were preserved upon early silification (10). This lack appears astonishing because most stromatolites, at least those of the Proterozoic, are considered to be dominated by cyanobacteria (9) and biofilms (9). However, this lack can be explained by high DIC concentrations (Figs. 2). Regardless of whether high-pCO$_2$ conditions ($>$10$^{-2}$ atm) with a slightly acidic to near-neutral ocean (31) or low-pCO$_2$ conditions (10$^{-3.5}$ atm) with an alkaline "soda ocean" of 5 to 500 meq liter$^{-1}$ carbonate alkalinity (20) are assumed, cyanobacteria could not have induced sheath calcification by photosynthetic carbon assimilation (Figs. 1 and 2). Thus, episodic Precambrian stromatolite formation should reflect exopolymer-mediated precipitation driven by physicochemical fluctuations of the whole-ocean basins. This is consistent with correlation of Proterozoic stromatolite morphotypes between different continents (32) and with the fractal geometry shown by some Archean stromatolites (33). Consequently, discoveries of 700- to 750-million-year-old calcified cyanobacteria (34) that unequivocally resulted from mictic sheath impregnation would set an upper limit of the pCO$_2$, at 10$^{-2}$ atm and would be consistent with a decrease in atmospheric pCO$_2$ during the Late Precambrian glaciations.

Several elements of uncertainty remain. The Ca$^{2+}$ curve of the Hardie model shifts considerably in response to changes in the mid-ocean ridge hydrothermal/basin water ratio, although the overall shape of the curve does not change (1, 2). Nevertheless, correlation with the occurrences of calcified cyanobacteria indicate that the order of magnitude of Ca$^{2+}$ calculated by Stanley and Hardie (2) is, in principle, correct. Fluctuating levels of seawater CaCO$_3$ supersaturation during the Phanerozoic could be expected (20). However, the effect on the Ca$^{2+}$ minimum curve is minor, because lowering of the initial Si/Ca of 1.0 results in higher ASi/Ca values for the settings that first show calcified cyanobacteria. Only the effect of varying temperature, Mg$^{2+}$, and SO$_4$$^{2-}$ concentrations (35) on the ASi/Ca will lead to a further modification of the Ca$^{2+}$ minimum curve. Abundances of calcified cyanobacteria may also be influenced by the distribution of carbonate platforms or alkalinity plumes from anoxic basins (20). Nonetheless, the presence of calcified cyanobacteria sets a lower limit of Ca$^{2+}$ concentration for ancient oceans, provided that hydropheric-atmospheric pCO$_2$ is known. Furthermore, the effect of carbon fixation by chemolithotrophic bacteria on carbonate precipitation should have been more significant than today during times of high seawater Ca$^{2+}$. This may explain the occurrence of calcareous microbial fossils such as Renalcis in reef cavities, and the great abundance of microbialites during large parts of the Phanerozoic. The recently discovered calcic microbialites containing Epiphyton- and Girvanella-like structures in a freshwater lake (36) may therefore indeed serve as an analog for microbial reefs formed during high-Ca$^{2+}$ times of the Paleozoic.

References and Notes
19. A conceptual model of EPS-mediated biologic calcification is given in the supplementary material (37).
23. The photosynthesis-induced rise in supersaturation is restricted to the microenvironment within the biofilms. Further, carbon removal is actually CO$_2$, rather than HCO$_3^-$; otherwise, charge imbalance would result.
24. Photosynthesis-induced rise in supersaturation was simulated with the program PARFEQ (37) by subtracting a given amount of 200 μmol liter$^{-1}$ carbon from the different waters, which were all equilibrated to S$_{CO_3}$ = 1.0 and pCO$_2$ = 10$^{-3.5}$ atm. For standard seawater and freshwater, a range from high-Ca$^{2+}$ to low-DIC to low-Ca$^{2+}$/high-DIC waters was generated by successive addition of Ca$^{2+}$ and DIC, respectively. Supplementary information on the model calculations and water-chemistry data of the investigated settings is provided in the supplementary material (38).
25. See supplementary material for DIC data and mode of cyanobacterial biofilm calcification in the different settings (38).
A Giant Sauropod Dinosaur from an Upper Cretaceous Mangrove Deposit in Egypt

Joshua B. Smith, 1, 2 Matthew C. Lamanna, 1 Kenneth J. Lacovara, 2 Peter Dodson, 1, 3 Jennifer R. Smith, 1 Jason C. Poole, 4 Robert Giegengack, 1 Yousry Attia 5

We describe a giant titanosaurid sauropod dinosaur discovered in coastal deposits in the Upper Cretaceous Bahariya Formation of Egypt, a unit that has produced three Tyrannosauridae-sized theropods and numerous other vertebrate taxa. *Paralititan stromeri* is the first tetrapod reported from Bahariya since 1935. Its 1.69-meter-long humerus is longer than that of any known Cretaceous sauropod. The autochthonous scavenged skeleton was preserved in mangrove deposits, raising the possibility that titanosaurids and their predators habitually entered such environments.

In the early 20th century, the Bavarian geologist Ernst Stroemer described a diverse biota from the Upper Cretaceous [Cenomanian: 93.5 to 99.0 million years ago (Ma)] Bahariya Formation (1) of the Bahariya Oasis, Egypt (Fig. 1).

This specimen is conserved in the collections of the Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA. 1Department of Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316, USA. 2Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA. 3Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA.

1Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA.

2Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA.

3Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA.

4Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA.

5Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA.

*To whom correspondence should be addressed. E-mail: smithjb@sas.upenn.edu

The vertebrae discoveries included fish, turtles, plesiosaurs, squamates, crocodyliforms, and four dinosaurs: the theropods *Spinosaurus*, *Carcharodontosaurus*, and *Bahariasaurus*, and the sauropod *Aegyptosaurus* (2). Tragically, Stroemer’s collections were largely destroyed during an Allied bombing of Munich in 1944 (3). With exceptions from Morocco (4–6) and Algeria (7), evidence of Late Cretaceous African dinosaur remains is limited. An improved understanding of Late Cretaceous African terrestrial vertebrates is important for the paleoecology of this region and is needed to evaluate biogeographic hypotheses pertaining to Gondwanan fragmentation (5, 8–10). Here we describe the partial skeleton of an extremely large sauropod dinosaur, the first tetrapod reported from Bahariya since 1935 (11). The specimen consists largely of vertebrae, pectoral girdle, and forelimb elements and is preserved in sediments indicative of intertidal deposits. A number of morphological differences distinguish the humerus of the specimen (Fig. 2A) from that of *Aegyptosaurus*, precluding referral to that genus (12). Because of these distinctions and its possession of several autapomorphies, we designate the new specimen as *Paralititan stromeri*, gen. et sp. nov. (13).

Two preserved caudal sacral centra of *Paralititan* lack pleurocoels. The centrum of the first caudal vertebra (Fig. 2B) is wider than high and procoelous, and has a convex distal articular condyle. The centrum is not biconvex, as in the titanosaurids *Alamosaurus* (14), *Neuquensaurus* (14), and *Pelegrinosaurs* (15). Its ventral surface has weakly developed longitudinal ridges laterally bordering a sagittal concavity. A postspinal lamina is present between spinopostzygapophyseal laminae on the distal surface of the neural spine. A second proximal caudal (Fig. 2C) is strongly procoelous and has a well-developed distal condyle. The scapula is concave medially. A prominent dorso-medial rugosity borders the mediolateral concavity as in the titanosaurids * Aeolosaurus*, *Lirainosaurus*, *Neuquensaurus*, and *Saltasaurus* (14, 16). Distal to the glenoid, a well-developed tabular process projects from the caudodental margin of the scapula. The development of this structure in *Paralititan* is equated only in a scapulocoracoid referred to the brachiosaurid *Brachiosaurus altithorax* (17).

The humerus is strongly expanded proximally and distally. Because of the modest de-

Table 1. Phylogenetic data matrix. The macronarian *Camarasaurus* is postulated as an outgroup of titanosauriformes (45, 46). Character codings are as follows: 0, hypothesized plesiomorphic state; 1 and 2, hypothesized derived states; 7, missing or uncertain data (19).

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Characters</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camarasaurus</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00170</td>
<td>00170</td>
<td>00170</td>
<td>00170</td>
</tr>
<tr>
<td>Brachiosaurus</td>
<td>11001</td>
<td>01000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00171</td>
<td>00170</td>
<td>00170</td>
<td>00170</td>
<td>00170</td>
<td>00170</td>
</tr>
<tr>
<td>Andesaurus</td>
<td>22222</td>
</tr>
<tr>
<td>Epachthosaurus</td>
<td>33333</td>
</tr>
<tr>
<td>Opisthocoelicauda</td>
<td>44444</td>
</tr>
<tr>
<td>Alamosaurus</td>
<td>55555</td>
</tr>
<tr>
<td>Malawisaurus</td>
<td>66666</td>
</tr>
<tr>
<td>Paralititan</td>
<td>77777</td>
</tr>
<tr>
<td>Saltasaurus</td>
<td>88888</td>
</tr>
</tbody>
</table>

1Department of Earth and Environmental Science, University of Pennsylvania, 240 South 33rd Street, Philadelphia, PA 19104–6316, USA.

2Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104–6316, USA.

3Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104–6316, USA.

4Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104–6316, USA.

5Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104–6316, USA.
You have printed the following article:

Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans
Gernot Arp; Andreas Reimer; Joachim Reitner
Stable URL: http://links.jstor.org/sici?siici=0036-8075%2820010601%293%3A292%3A5522%3C1701%3APBCACC%3E2.0.CO%3B2-B

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References and Notes

6. **Precambrian Columnar Stromatolite Diversity: Reflection of Metazoan Appearance**
Stanley M. Awramik
Stable URL: http://links.jstor.org/sici?siici=0036-8075%2819711119%293%3A174%3A4011%3C825%3APCSDRO%3E2.0.CO%3B2-1

27. **The Carbon Cycle and CO₂ Over Phanerozoic Time: The Role of Land [and Discussion] Plants**
Robert A. Berner; T. Lenton; M. Tester; D. J. Beerling
Philosophical Transactions: Biological Sciences, Vol. 353, No. 1365,
Stable URL: http://links.jstor.org/sici?siici=0962-8436%2819980129%29353%3A1365%3C75%3ATCCACO%3E2.0.CO%3B2-Y

NOTE: The reference numbering from the original has been maintained in this citation list.